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Abstract. 
A simple model for burning on the circular face of a substrate is analyzed. It is shown that spatial patterns can form, 
in which the temperature develops hot and cold regions arranged in concentric circular rings. A linearized study 
shows the parameter values for which small amplitude patterns are stable. The fully non-linear equations are then 
solved using an efficient shooting method in the spatial variable, and an extremely complicated bifurcation diagram 
is obtained, from which it follows that multiple solutions occur at the same values of the defining parameters. 
The effect of heat leakage at the edges of the circular region is considered, and complicated non-linear behaviour 
occurs in this case also. Seven different temperature patterns, all co-existing at the same parameter values, are 
presented in a particular instance. 
Key words: Exothermic reaction, pattern formation, multiple solutions, shooting method, bifurcation diagrams. 

1. Introduction 

The study of temperature sensitive chemical reactions is central to combustion theory, and it 
is now known that such reactions can exhibit an extraordinary range of dynamical behaviour. 
One of the first model combustion systems capable of exhibiting spontaneous oscillations in 
temperature was proposed by Sal'nikov [1] in 1949, and consists simply of two first-order 
decay reactions, at least one of which is exothermic. The temporal dynamics of this reaction, 
when well stirred, have been analyzed in detail by Gray and Roberts [2] and Forbes, Myer- 
scough and Gray [3], for example, and a recent article by Gray and Forbes [4] demonstrates 
the full complexity of this apparently simple scheme, when both decay reactions involve 
temperature dependent reaction rates. 

Although the Sal'nikov reaction was originally proposed as a mathematical model, to 
illustrate the possibility of spontaneous oscillations, it has nevertheless been shown to have 
significant application to real combustion systems. Gray and Griffiths [5] found reasonable 
agreement between the oscillatory behaviour predicted by the Sal'nikov model and experi- 
mental observations for a reaction involving gaseous di tert-butyl peroxide. The oscillatory 
behaviour of the hydrogen-chlorine reaction has also been studied in relation to the predictions 
of the Sal'nikov model, in a thorough investigation by Coppersthwaite, Griffiths and Gray 
[6], and agreement with measured temperature histories was obtained. 

If the reaction domain is not well mixed, then spatial patterns are possible, in addition 
to the temporal oscillations that can occur, From a mathematical point of view, the spatially 
homogeneous steady state becomes unstable as a result of the combined effects of reaction 
and diffusion, and a spatial pattern is formed by means of a Turing bifurcation. Some general 
properties of Turing patterns are discussed by Dillon, Maini and Othmer [7], for example. 
Small amplitude Turing patterns in the simple Sal'nikov model of combustion are investigated 
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by Gray and Scott [8] (chapter 10), and have been continued numerically to large amplitude 
by Forbes [9] using a spectral solution method. In this case, multiple solutions were found to 
be possible, and their stability was assessed by means of an eigenvalue analysis. 

In addition to stationary patterns, it is of course the case that other important spatially vary- 
ing structures can form in a combustion system. Travelling waves were examined by Gray and 
Kordylewski [ 10] for a particularly simple exothermic reaction, and an extension of this model 
to include the effects of species consumption has been used recently by Bayliss, Matkowsky 
and Riecke [11], to study travelling waves in cellular flames. Bayliss and Matkowsky [12] 
argue that, when heat loss at the wall is taken into account, solutions may be obtained which 
are apparently chaotic. 

In the present paper, the simple reaction scheme of Sal'nikov [1] is used, as a model for 
burning at the face of a circular substrate. In view of the demonstrated relevance of this model 
particularly to gas-phase reactions, the problem to be studied here is essentially the formation 
of spatial patterns in combustion at the nozzle of an oxy-welder, for example, and direct 
Newtonian cooling to ambient temperature at the reaction face is permitted in the model. The 
chemical scheme is simply 

s c }4 P, (1) 

in which S denotes the substrate, C is some intermediate chemical produced by the two-stage 
decay process, and P is an inert product which is removed from the reaction zone. The feeder 
rate ko is assumed to be constant, but the second rate parameter kl is temperature dependent, 
according to Arrhenius kinetics, and has the form 

k, (T) = M, exp(-E/RT).  (2) 

Here, MI is a constant having units time -l, the activation energy for the reaction is E, R is 
the universal gas constant and T denotes temperature. 

The rate law for intermediate product C is obtained simply from the first order reaction 
scheme (l) and may be written 

O[C] = DV2[C] + ko[S] - k,[C], (3) 
Ot 

where D represents the diffusion coefficient for the chemical C, and the square brackets [] 
denote the molar concentration of the relevant species. 

In view of the fact that rate parameter kl is temperature sensitive, it is necessary to express 
conservation of heat energy at every point on the reaction surface by means of the equation 

O7' 
pch--~ = K V 2 T -  x(T -Ta)  + Qlkl[C]. (4) 

The quantities p and Ch are respectively the density and heat capacity of the substrate, and the 
first term on the right hand side, with heat conduction constant K,  represents the diffusion 
of heat energy according to Fourier's law of conduction. The second term on the right 
allows for Newtonian cooling, at constant rate X, to ambient temperature Ta, and the last 
term represents the heat produced by the second (exothermic) stage of reaction scheme (1). 
A detailed derivation of equation (4) is given in Forbes [9]. Finally, the system (2)-(4) is 
supplemented by zero-flux boundary conditions 

0[__C_]C ] _ 0T = 0 (5) 
On On 
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at the perimeter of the circular region, r = A. 
Dimensionless variables are defined, using IlM1 as the unit of time, and the radius A of 

the reaction region as the length scale. Temperature is scaled relative to the ratio E / R ,  and 
the most convenient unit for concentration is the quantity (pchE)/(Q1R). In terms of these 
new dimensionless variables, the governing equations (2)-(4) become 

OC = aV2C + P -  Ce-1/T 
Ot 

OT _ a V 2 T  _ fl(T - Oa) + Ce -1/T, 
Ot 

(6) 

with boundary conditions taken from equations (5), in the form 

O C / O r = O T / O r = O  on r = l .  (7) 

Solutions to these equations are dependent upon the five dimensionless constants tr = 
D / ( M I A  2) and a = K/(MlpchA 2) which are respectively the diffusion coefficient for 
chemical C and the dimensionless heat conduction, fl = x/(Mlpch) the rate of Newtonian 
cooling at the reaction surface, the dimensionless ambient temperature Oa = (RTa) /E,  and 
the supply rate # = (to [,5]Q1R)/(M1 pchE) of the substrate chemical S. 

In the next section, a linearized theory for the system (6)-(7) is given, and shows the 
parameter regions within which stable stationary patterns are to be expected. An efficient 
shooting method for solving the steady equations is outlined in Section 3, and the results of 
extensive numerical calculation are outlined in Section 4. The effect of altering the boundary 
conditions (7) to allow heat loss at the circumference of the circular burning region is consid- 
ered in Section 5, and reveals a highly complex bifurcation structure, in which many different 
patterns can co-exist. 

2. The linearized solution 

In this section, a small amplitude solution for spatial patterns is outlined, and reveals the region 
of the parameter space where stable steady-state patterns are to be expected. This solution is 
then used as the basis of the numerical work in following sections. 

The concentration C(r,t) and temperature T(r,t) in equations (6) are expanded in pertur- 
bation series 

C(r,t)  = Ce + ~C,(r,t) + O(e 2) 

T(r , t )  = Te + ~Tl(r,t) + O(e2), (8) 

and terms are collected at each order of the parameter e, which is essentially a measure of the 
pattern amplitude. 

At zeroth order in pattern amplitude e, the equilibrium concentration Ce and temperature 
Te are found to be 

Ue = >e a/T" with Te = Oa + # / 8  (9) 

The linearized equations, of primary interest in this section, are obtained by collecting 
terms of first order in amplitude e. These are most conveniently expressed in vector form, by 
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creating the vector function U1 = [G1, Tl] T, containing the first-order correction functions 
defined in the perturbation scheme (8). The equations may then be written 

0U1 =Dm(02UI 10UI'~ 
Ot \ ~  + r -~ - r  ) + AUI (10) 

subject to boundary conditions 

69U1/oOr=0 on r =  1. (11) 

Here, a matrix of diffusion coefficients 

Dm= ( am0 cz0) 

has been defined, and the subscript m refers to the fact that, for steady patterns, the coefficient 
a is determined as an eigenvalue in a problem for which the vector U1 is the associated 
eigenfunction. In addition, the matrix A is 

( - e x p ( - 1 / T e )  -#/T2e ) 
A = ~ exp(-1/Te) -j3 + #/T2e ' 

and the equilibrium quantities Ce and Te are given in (9). 
The steady-state solution to the linearized equations (10), satisfying the boundary condi- 

tions (11), must be sought in the form 

Ul(r) = BJo(jl,mr), (12) 

where J0 denotes the Bessel function of first kind and order zero, and the constants jl,m are the 
zeros of the Bessel function dl of order one. When the form of the pattern (12) is substituted 
into the governing equations (10), the equation 

AB = j2,mDmB 

is obtained, which is evidently a (generalized) eigenvalue problem for the diffusion coefficient 
a, with B as the associated eigenvector. After a little algebra, the eigenvalue is obtained in the 
form 

2 T e (~ + j2,mC 0 exp(-1/Te) (13) 
a m  = j 2 , m [ .  _ T2e ( 3 + j2,ma) ] 

which is similar to the expression for one-dimensional patterns found by Forbes [9]. 
In view of the physical requirement that the diffusion coefficient (13) must be positive, it 

follows simply that 

l ( . )  
a <  j2,---~ ~e 2 - 3  • (14) 

Similarly, the heat conduction coefficient o~ in equation (14) must also be positive, which 
gives the condition 

0a < (15) 
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Fig. 1. The region of the parameter space within which patterns can be formed for/3 = 1. The dashed line labelled 
'Hopf '  is the boundary between stable and unstable patterns; in the well mixed problem, it gives the location of 
Hopf bifurcations at which spontaneous oscillatory combustion (in time) is generated. 

for patterns to be formed. This is sketched in Figure 1 as the upper (solid) line. Since the 
ambient temperature Oa in condition (15) must also be positive, it follows that patterns can 
only be formed if # </3. 

Stability of the stationary patterns (12) can be studied in the linearized approximation by 
considering the time-dependent problem (10), subject to the zero-flux boundary conditions 
(11), and with diffusion coefficient a given as one of the eigenvalues (13). It is evident that 
the solution varies with time t according to the general formula 

¢x~ 2 

Ul(r , t )  = ~ y~Kq,rJo(jl,qr)exp(Aq,#) 
q = 0 r = l  

in which the exponents/~q,r are obtained as the eigenvalues of the matrix equations 

[A - j~,qDm]Kq,r = Aq,~I~,r, q = 0, 1 ,2 , . . .  (16) 

When written out in full, the eigenvalue equation (16) gives rise to a quadratic expression 
for ,'~q,r, which can be represented as 

/~2q, r -- ~m,q/~q,r -q- Am, q = O, (17) 

in which the trace and determinant of the matrix on the left-hand side of equation (16) are 

• 2 # / T  2 e-UV, Zm,q ~-- - - f f l ,q(Om q- O~) --  (/3 - -  + ) 

Am, q = j4,qCrmOl + j2,q[Ole - I /T*+  Crm(/3 -- #IT2)] +/3e -l/Te. (18 )  



476 Larry K. Forbes 

A necessary condition for the stability of the steady-state pattems (12) is therefore that the real 
part of the eigenvalues Aq,r should be negative, for all q = 0,1,2 ....  and r = 1,2. Equivalently, 
the trace ~]m,q must be negative, from which it follows that 

- + e - ' I n  > 0 (19) 

is necessary for pattern stability in the linearized analysis. This condition is also illustrated in 
Figure 1, by means of the dashed line labelled 'Hopf' on the diagram. 

Patterns are therefore possible within the parameter region allowed by condition (15); 
inside this region, patterns are stable if they conform with inequality (19), and unstable 
otherwise. This information is represented in Figure 1. It is also possible to give a clear 
physical interpretation for condition (19), since the stability or otherwise of the spatial patterns 
is related to the emergence of spontaneous oscillations in the well mixed reaction. Condition 
(19), when obeyed as an equality, is precisely the curve in the parameter plane along which 
time dependent oscillations can be born by means of a Hopf bifurcation from the homogeneous 
steady state. Inside the region enclosed by the dashed curve in Figure 1, where the patterns are 
unstable, the well mixed reaction exhibits spontaneous oscillatory combustion, but no such 
oscillations occur outside this region, at least in small amplitude theory. Consequently, spatial 
patterns exist as time dependent standing waves within the parameter region enclosed by the 
dashed curve, but as stable time independent structures outside this region. 

3. Numerical solutions for steady state patterns 

Solutions of very great accuracy have been obtained, for time independent patterns, using an 
efficient shooting method. This approach yields results of far superior accuracy to spectral 
methods (e.g. [9]), and additionally requires only a fraction of the computing resources. 
Consequently, it is possible to explore a much larger region of the solution space with this 
method. 

The radial coordinate r is represented by N equally spaced discrete points r j , j  = 
1 ,2 , . . . ,  N,  in such a way that rl = 0 and rN = 1. An interior matching point rm is 
chosen from this set, and we have found it convenient to use rm = 1/2. 

To begin the shooting algorithm, the parameters #, t ,  Oa and ot are all specified. In addition, 
we give the temperature amplitude AT of the pattern, defined here as 

AT = T(0) - T(1). (20) 

An initial guess is now made for the vector of unknowns 

U = [el ,  TI, CN, o'] T, (21) 

the four elements of which are respectively the concentration and temperature at r = 0, the 
concentration at r = l, and the diffusion coefficient a. 

With values assumed for the elements of the vector u in equation (21), a trial pattern is 
now computed. The governing equations (6), in steady-state form, are written as a system of 
four ordinary differential equations, by making the changes of variable 

~)1 ~- C(r) ¢2 ~ C t ( r )  

¢3 -- TOO ¢4 = T ' ( r )  
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For r # O, the system to be solved therefore becomes 

= 

_  0le 

- + -1 
(22a) 

When r = 0, the term (1/r) (OC/Or) in the polar form of the Laplacian operator in equations 
(6) can be replaced by the second derivative 02C/Or 2, and so, for r = 0, the second and fourth 
equations in the system (22a) are replaced by 

1 

~b~= ~1 [/3(~b3 - Oa) - ~b,e -'/~3] . (22b) 

The standard fourth-order Runge-Kutta method is used to integrate the system (22) on the 
left-hand side of the matching point, from rl = 0 to r = rm. The initial conditions for the 
numerical integration are ~bl = Cl, ~bz = 0, ~b3 = Tl and ~b4 = 0, which follows from the 
guess (21) and the requirement of analyticity at the pattern centre r = 0. This gives values 
GIn,L, G~,L, TIn,L, and Tim, L at the left hand side of the matching point r = rm. 

A similar procedure is used on the right side of the matching point. Since the pattern 
amplitude AT is known, the temperature TN at r = 1 is given simply from equation (20) in 
the form TN = TI - AT. The Runge-Kutta method is now used to integrate backwards from 
r = 1 to the right-hand side of the matching point r = rrn, using starting values taken from the 
guess (21) and the boundary conditions (7) at the perimeter r = 1 of the reaction region. This 
yields values Urn,R, C~n,R, Tm,R and T[n,R at the right hand side of the matching point. 

The values of concentration C and temperature T and their first derivatives on the left 
and right sides of the matching point r = rm, will not, in general, be equal, and so Newton's 
method is used to adjust the guess (21) iteratively until equality is obtained. This is usually 
achieved in about five iterations, at which point a valid steady state pattern has been found. We 
typically use between 8000 and 64,000 numerical mesh points on either side of the matching 
point, and this guarantees at least eight decimal places of accuracy for the solution, in only 
several minutes of execution time on a 486 personal computer. 

One disadvantage of the shooting method, when compared with spectral techniques, is that 
it does not readily yield information about the stability of the non-linear pattern. Nevertheless, 
it has been found by Forbes [9] that unstable one-dimensional burning patterns decay only 
slowly, so that stability is not of major concern. This was reinforced in a study of the Belousov- 
Zhabotinskii reaction [13], where direct time integration of the governing equations showed 
that unstable patterns would persist long enough for them to be observed comfortably in the 
laboratory. For this reason, the extreme accuracy and speed of the shooting method approach 
more than compensates for the lack of information about pattern stability. 

4. Results for stationary insulated patterns 

When the Newtonian cooling coefficent has the value/3 = 1, it is clear from Figure 1 that 
stable patterns are confined to a rather small region of the parameter space. For definiteness 
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Fig. 2. Variation of pattern amplitude with diffusion coefficient ~, for the first eigensolution. Here, ~ = 1, a = 
0.001,/~ = 0.5 and 0 = 0.18. 

in this section, it will be assumed that/3 = 1, with thermal conductivity coefficient a = 0.001, 
reagent supply rate # = 0.5 and ambient temperature Oa = 0.18. These values are within the 
region where the linearized solution of section 2 is stable, and appear to give results indicative 
of other parameter values within this zone. 

It follows from equation (13) that the diffusion coefficient for small amplitude patterns is 
only positive, for these parameter values, when m < 3. We shall therefore be concerned only 
with the first two eigenmodes in the formation of burning patterns, and equation (13) indicates 
that the chemical diffusion coefficients (the eigenvalue) for these two modes are cr] = 0.2383 
and a2 = 0.1526. Higher modes are not of physical interest, since they do not give a positive 
eigenvalue. 

Figure 2 shows a bifurcation diagram for the first eigensolution, m = 1. Here, the amplitude 
of the patterns AT defined in equation (20) has been plotted as it varies with the diffusion 
coefficient a, and is sketched with a dashed line on the diagram. This curve intersects the 
horizontal axis at the value al = 0.2383 predicted by the linearized analysis of Section 2. The 
results shown in this figure are compiled from 165 separate converged non-linear solutions to 
the system (22). It has also been useful to define another measure of pattern amplitude, given 
by ATmax, which is taken to be the difference between the maximum and minimum values of 
temperature across the pattern. This quantity is sketched with a solid line in Figure 2. 

Both measures of amplitude in Figure 2, namely AT and ATmax, increase as the diffusion 
coefficient cr is increased beyond the linearized value al = 0.2383. In fact, the curves continue 
beyond the right-hand side of the diagram to a --+ ~ ,  where AT --+ 0.26687 and ATmax --+ 
0.81574; this information was determined with the present numerical method from a solution 
obtained with a = 107. In this limit a --~ cx~, the first equation in the system (6) permits 
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only a constant solution for the concentration C' in the steady state, so that the shape of 
the temperature profile is determined by the second equation in the system (6) (the energy 
equation) alone. 

It is also evident from Figure 2 that there is a region in which three patterns exist simul- 
taneously, in the approximate interval 0.44 < tr < 0.6. It is likely that the smallest and largest 
amplitude patterns in this region are stable in time, and that the pattern of intermediate ampli- 
tude is unstable. There is therefore a genuine and interesting lack of uniqueness in solutions 
to this problem, and which of the patterns would actually be observed in the laboratory 
presumably depends on the initial conditions in the experiment. 

Three different patterns are shown in Figure 3a, and were all computed with diffusion 
coefficient ~r = 0.5. Each pattern has an extensive region of high temperature to the left of the 
diagram, near the centre r = 0 of the circular burning region, and a cooler region near the edge 
of the pattern, as evidenced by the dip in temperature to the right of the figure. To emphasize 
the fact that these are circular patterns, the largest amplitude solution in Figure 3a is drawn 
over the entire circular domain in Figure 3b. The region of high temperature at the centre is 
clearly visible, as is the dip in temperature near the edge of the region. Notice also that the 
profile becomes fiat at the rim r = 1, as is required by the boundary conditions (7). 

The second eigensolution is now investigated using the numerical shooting method of 
Section 3, and the results are displayed in Figures 4(a) and (b). In these diagrams, the curves 
have been plotted using 343 separate converged solutions to the system of equations (22), and 
the pattern amplitude AT defined in equation (20) is shown in Figure 4(a), while the maximum 
measure of amplitude ATmax is displayed in Figure 4(b). 

It is evident from Figures 4(a) and (b) that the second eigensolution has an extremely 
elaborate bifurcation behaviour. It emerges from the linearized solution or2 = 0.1526 and begins 
to grow with increasing diffusion coefficient cr, before then undergoing a fold bifurcation to 
smaller values of or. It folds again at about ~r = 0.06 and moves towards the right before again 
folding at about cr = 0.22. The numerical results indicate that the amplitude AT in Figure 4(a) 
forms a genuine cusp at this value, and a modified version of the numerical scheme in Section 
3 was necessary to continue the solution around this point; it allowed the temperature T(0) 
at r = 0 to be given, and both cr and AT to be found numerically. A further fold bifurcation 
occurs at about cr = 0.08, before the solution branch eventually terminates on the horizontal 
axis, at ~rl = 0.2383. 

A second, and apparently unrelated, branch of solutions also bifurcates from the second 
eigenvalue tr2 = 0.1526, and has been sketched with a dashed line in Figures 4(a) and (b). 
It also undergoes a fold bifurcation at about cr = 0.046 before turning and continuing out to 
the fight of Figures 4. It seems likely that this solution branch will also continue to cr ~ oo, 
although it becomes extremely difficult to follow numerically, and its fate beyond about ~r = 
0.48 is therefore somewhat uncertain. 

Figures 4(a), (b) also reveal the fact that the Turing bifurcation points crl = 0.2383 and or2 
= 0.1526, indicated with small open circles on each picture, have a complicated structure that 
allows multiple solution branches to bifurcate from each point. (This is a different behaviour 
from the Hopf bifurcation points seen in the generation of time dependent oscillations in well 
stirred combustion reactions, where only a single solution bifurcates from each point.) It has 
been seen that both a first eigenmode and a second eigenmode solution bifurcate from the 
point ~r I = 0.2383, and that two different second eigenmode solutions have emerged from the 
point ~72 = 0.1526. Whether additional solution branches also exist is unclear, although no 
extra have been found numerically. 
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Fig. 3. (a) Three different patterns, all obtained with the same diffusion coefficient tr = 0.5. (b) Three dimensional 
view of the largest amplitude profile in part (a). The remaining parameters have the same values as for Figure 2. 

Six different patterns, all computed at the same values of the governing parameters, are 
shown in Figures 5, for the value of diffusion coefficient tr = 0.1. The first four such patterns, 
corresponding to the curve sketched with a solid line in Figures 4, are displayed in Figure 
5(a), and the two solutions in Figure 5(b) are taken from the second branch of solutions in 
Figures 4, sketched with a dashed line. These diagrams again illustrate the great complexity of 
pattern possibilities that arise in this problem, as a consequence of the inherent non-linearity 
of the system (6). Which of the patterns would actually be observed in an experiment would 
doubtless depend upon initial conditions. 
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5. The effect of boundary heat loss 

In real systems, it is unlikely that the boundary r = 1 would remain perfectly thermally 
insulated, and so it is appropriate to conclude this paper with a brief investigation of the 
effects of heat dissipation at the edge of the circular region. This is done by replacing the 
second of the boundary conditions (7) with the term 

OT/Or=-7(T-Oa) on r = l .  (23) 

Here, the positive constant 7 represents the coefficient of cooling to ambient temperature 0a 
at the boundary. 

It is possible to perform a linearized analysis in the case of boundary heat loss 7 # 0, 
exactly as in Section 2, provided that the coefficient 7 is small. In addition to the perturbation 
expansions (8), it is therefore necessary to set 

7 = E")'I + O(£2) ,  

with small parameter e measuring the pattern amplitude, as before. The details are reasonably 
straightforward, and so will not be given here, but the significant qualitative difference between 
this result and the solution of Section 2 is that, when 71 is not zero, patterns are no longer 
obtained as solutions to an eigenvalue problem. Whereas in Section 2, linearized patterns 
could only be obtained at the special values of diffusion coefficient a given by the formula 
(13) and the amplitude remained arbitary, when boundary heat loss is allowed, it is now found 
that spatial variability is possible for any or, but the pattern amplitude is determined by the 
value of 7. 

It is natural therefore to ask what becomes of the patterns in Section 4 when heat loss at the 
boundary is allowed. Figures 6(a) and (b) illustrate the complex and surprising behaviour of 
the various solution branches in Figures 4 as the loss coefficient 7 is increased, for a particular 
value cr = 0.07 of the chemical diffusion coefficient. There are essentially three different 
solution branches in these Figures, and to distinguish between them, they have been plotted 
using a solid line, a dashed line, and a dot-dashed line, for ease of viewing. Each solution 
branch contains at least one fold bifurcation, and the two branches drawn with the solid and 
the dashed lines both begin and end on the vertical axis 3' = 0, so providing an analytic link 
between several of the solution curves shown in Figures 4. 

Perhaps the most unexpected feature of the bifurcation diagrams in Figures 6 is that one 
of the solution branches, shown with a dot-dash line, appears to continue out to 7 --+ ~ ,  and 
numerical solutions have indeed been found for 7 = 150. It was initially anticipated that a 
very large heat loss coefficient 7 would simply give a flat temperature profile of very small 
amplitude, but it is evident from Figures 6 that such is not the case. Instead, the pattern is able 
to maintain a large amplitude, by allowing T ~ 0a as r --+ 1 with very large negative slope 
T'(r) in this region. In effect, a narrow thermal boundary layer is formed near r = 1, as 7 -+ 
(X). 

The complexity of pattern formation has been increased by allowing heat loss at the 
boundary r = 1, and to illustrate this point we present seven different temperature patterns, all 
for the same value of the loss coefficient 7 = 0.5, in Figures 7. These profiles have been drawn 
using solid lines, dashed lines and dot-dashed lines, so as to enable them to be identified with 
the solution branches in Figures 6. Again it is seen that the non-linearity of the governing 
system (6) results in a rich choice of pattern behaviour, and the one that would be observed in 
an experiment would be strongly dependent on initial conditions. 
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6. C o n c l u s i o n s  

In this paper, both analytical and numerical  methods  have  been used to study the formation 
o f  spatially dependent  patterns in a burning reaction at the face of  a substrate. The numerical  
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results were based on the use of a highly efficient shooting scheme, which allowed a rather 
detailed exploration of the possibilities for pattem formation, and of the order of 700 separate 
converged numerical solutions have been used in this study. 

Patterns are formed by Turing bifurcation from a homogeneous steady state, in the absence 
of mixing, and it is generally the case that only the first few eigenmodes give permissible pat- 
terns. Nevertheless, the bifurcation diagrams become extremely elaborate, primarily through 
repeated fold bifurcations, so that a multiplicity of pattems is possible for a given set of phys- 
ical parameters. In addition, the points of Turing bifurcation themselves evidently possess a 
complicated structure, so that multiple solution branches can emanate from the one point. It 
has been found here that both the first and the second eigen-pattern can bifurcate from the 
Turing point corresponding to the first eigensolution. 

This complexity of pattern formation behaviour is not removed by allowing heat dissipation 
at the boundary of the region, as might be expected, but is instead enhanced by it. This is 
perhaps consistent with the observation of Bayliss and Matkowsky [12] that chaotic time 
dependent behaviour may be observed in these cases. 

The question of pattern selection naturally arises from this work, and it must be the case 
that, when such a multiplicity of solutions exists, the pattem which is actually observed is 
strongly influenced by initial conditions. Small perturbations in a laboratory experiment might 
also cause the pattem to jump from one of its possible steady states to another, so giving the 
appearance of a random or chaotic field. 
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